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Summary

  As  a  global  sporting  event,  tennis  competitions  attract  attention  for  their  intense  competition.
This  paper  aims  to  establish  a  model  predicting  match  volatility  and  forecasting  event  outcomes.  A
Probability-Updatable  Markov  Chain  (PUMC)  model  based  on  Support  Vector  Machines  (SVM)
is  proposed  to  predict  dynamic  winning  probabilities  of  each  point  and  conditional  winning  prob-
abilities  of  the  match  at  each  point.

  For  TASK  1,  an  Adaptive  Multifaceted  Integration  Model  is  designed  to  assess  player  on-
court  performances  under  the  impact  of  historical  match  results.  After  pre-processing  and  Ex-
ploratory  Data  Analysis(EDA),  this  paper  constructs  15  static  indicators  and  6  dynamic  indica-
tors  based  on  different  characteristics.  Static  indicators  measure  their  own  average  levels  of  players,
and  Factor  Analysis  is  used  to  extract  out  four  crucial  factors.  On-court  performance  coefficient  is
generated  by  dynamic  indicators  that  use  Grey  Relational  Analysis  to  determine  correlations  and
weights.  Applying  the  Exponential  Moving  Average  equation  to  adapt  the  performance  coeffi-
cient  to  the  average  levels,  on-court  performance  scores  for  any  player  at  any  point  can  be  easily
obtained.  Comparing  the  model  with  real  matches,  it  has  an  average  accuracy  of  76.5%,  with
a  maximum  of  87%,  indicating  effective  evaluation  of  player  performances  closely  aligned  with
real-world  scenarios.

  For  TASK  2,  by  quantifying  momentum  from  psychological  and  behavioral  perspectives,  the
correlation  between  momentum  and  player  swings  in  the  match  is  validated.  Subsequently,  it  per-
formed  The  Granger  Causality  Test  and  Causality  and  Correlation  Analysis.  According  to  the
Akaike  Information  Criterion  (AIC),  the  Granger  Causality  Test  revealed  mutual  influence  between
momentum  and  performance  swings  in  22  out  of  31  matches.  Further  analysis,  Correlation  Analysis
shows  a  strong  positive  correlation  (FCC  =  0.76)  with  momentum  preceding  swings.

  For  TASK  3,  it  proposes  a  Probability-Updatable  Markov  Chain  (PUMC)  model  based  on
SVM  to  predict  match  swings,  including  dynamic  winning  probabilities  for  each  point  and  con-
ditional  winning  probabilities  for  the  entire  match.  To  interpret  the  model  further,  it  then  analyzes
the  accuracy  and  rationality  of  the  model’s  predictions  both  horizontally  (between  matches)  and
vertically  (within  games).  The  model  achieves  an  average  accuracy  of  77.3%,  with  a  maximum  of
92.1%,  and  the  highest  recall  is  95.4%.  Using  Shapley  Additive  exPlanations  (SHAP),  it  iden-
tifies  the  four  factors  with  the  greatest  impact  on  swings:  SSER,  SBR,  FSR,  and  SSCR.  Finally,
based  on  the  above  analysis,  it  offers  practical  recommendations  for  players  entering  new  matches.

  For  TASK  4,  when  applying  the  prediction  model  to  three-set,  two-win  women’s  matches,  the
accuracy  rate  is  71.1%.  Therefore,  it  refines  and  improves  the  model  by  introducing  the  serve
correction  factor  e  and  the  court  type  factor  pα.  Considering  the  similarity  of  racquet  sports,  
a slight  modification  to  the  model  allows  for  predictions  in  different  types  of  matches.

  Finally,  this  paper  conducts  sensitivity  analysis  and  robustness  testing  on  the  model,  revealing
its  good  sensitivity  to  the  smoothing  coefficient  and  strong  stability  regarding  dynamic  factor.
Keywords:  PUMC;  Winning  Probabilities;  Exponential  Moving  Average;  SVM;  SHAP
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1 Introduction

1.1 Problem Background

With the conclusion of the 2023 Wimbledon Gentlemen’s Final, an increasing number of re-
searchers are turning to modern technologies and methodologies to analyze the determinants of
victory in sports competitions. ”Momentum” emerges as a pivotal element among these factors, yet
its direct analysis remains elusive. Consequently, the establishment of a scientific and generalizable
model to investigate this phenomenon is both necessary and urgent.

1.2 Restatement of the Problem

Upon assimilating the pertinent background information, the team is tasked with executing the
subsequent actions:

Task 1: Capture and exemplify thematch flowwhen points occur, assess player performancewithin
designated timeframes and visualize the flow of the match.

Task 2: Validate the model’s efficacy by demonstrating the role of ’momentum’ in the dynamics
of the match.

Task 3: Identify indicators for measuring shifts in ’momentum’ and predict the correlation between
these indicators, providing match-specific recommendations.

Task 4: Evaluate the effectiveness of the model and propose potential refinements, assessing the
model’s generalizability.

Task 5: Draft a two-page memorandum to communicate strategies, modeling, and outcomes with
coaches and players.

1.3 Overview of Our Work

The work we have done in this problem is mainly shown in the following Figure 1.

Figure 1: Flow of Our Work



Team 2423183 Page 4

2 Assumptions and Justifications
Given the multifaceted complexities inherent in the practical scenario, this study posits a set

of rational assumptions to distill the issues at hand. Each assumption is meticulously corroborated
with its respective rationale:

• Assumption 1: Exclusion of external environmental disturbances, such as audience
chatter and movement.
Justification: Evidence suggests that noise and other environmental factors can affect play-
ers’ performance. In official competitions, such behaviors should be avoided.

• Assumption 2: Factors not considered in this paper do not affect the match outcome.
Justification: There are numerous factors that can influence a match, such as weather con-
ditions and audience presence. However, most of these impacts are minimal; thus, it is rea-
sonable for the model to disregard these minor factors.

• Assumption 3: The provided data accurately reflects the average level of the players.
Justification: A match consists of sets and games, leading us to believe that the provided
data is sufficient to assess the average individual level of the players.

3 Notations
The key mathematical notations used in this paper are listed in the following Table 1.

Table 1: Notations used in this paper

Symbol Description

Sj the average individual level of the j-th player
Di,j the composite dynamic measure for the j-th player at the i-th point
Bi,j the performance of the j-th player at the i-th point
Li the probability of winning changes with scoring or concedingpoints
mi the value of momentum at the i-th point
SFs the s-th swing factor
α the smoothing coefficient
β the dynamic factor

4 Model Preparation

• Data Transformation
We performed data transformation regarding scoring principles related to the competition
rules. For instance, for certain scoring rules involving data such as AD and score, we replaced
them to facilitate subsequent model calculations.

• Data Standardization
To enhance model performance during the subsequent modeling process, we employed the
Z-score method for data standardization. This method involves scaling each feature by its
standard deviation, transforming the data into a standard normal distribution with a mean of
0 and a standard deviation of 1. This aids the model in handling scale differences among
different features, thereby improving training effectiveness.
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5 Task 1: Flow of Matches With Performance Evaluation

5.1 Metrics Reconstruction

Observing the dataset “data_dictionary.csv”, we find that it comprises 46 variables. Given the
large number of variables, it is essential to categorize and combine them for more efficient analysis.

In this regard, we have considered the characteristics of each variable, constructing new metrics
from both static and dynamic perspectives, and have further classified these metrics on this basis.

Figure 2: Refactoring metrics from static and dynamic perspective

In Figure 2, static metrics reflect the player’s average level of play, considered to be the ability
accumulated through long-term training, and are characterized by stability. Dynamic metrics, on the
other hand, reflect the player’s temporary state, which changes throughout a match. Explanations
for each reconstructed metric can be found in the Appendices (Figure 19).

In the following two sections, we will explore different methods for extracting metrics, taking
into account the unique characteristics of both types of metrics.

5.2 Factor Analysis of Static Metrics

Given the abundance of static metrics (see thosemetrics in Appendices, Figure 19), factor analy-
sis can be employed for dimensionality reduction and simplification of metrics, using several factors
to describe the relationships between metrics and to extract the main influencing information.
Step 1: Positive direction adjustment of static metrics
Step 2: Statistical analysis

We apply the Kaiser-Meyer-Olkin (KMO) test and Bartlett’s test of sphericity to examine the
relationships between variables. As shown in Table 2, a KMO value equal to 0.792 and a sig-
nificance level of P = 0.0000001 indicate significant correlations among variables, validating the
effectiveness of factor analysis.
Step 3: Explained variance and factor rotation

According to Table 3, the cumulative variance contribution of the first four factors reaches
89.425%, indicating a strong explanatory capacity. Finally, we can summarize the four factors as:
return game performance factor (F1), serve game performance factor (F2), serving stability factor
(F3), and scoring factor (F4).



Team 2423183 Page 6

Table 2: KMO and Bartlett’s test

KMO 0.792

Bartlett
Approx. Chi-Square 965.916

df 105
P 0.0000001

Table 3: Variance explained

Name % of Variance(Rotated) Cumulative % of Variance(Rotated) % Weight

F1 0.302 30.213 33.786
F2 0.273 57.521 30.537
F3 0.208 78.322 23.261
F4 0.11 89.425 12.416

Step 4: Static metric evaluation

We define Sj as the average individual level of the j-th player.

Sj = 0.338× F1 + 0.305× F2 + 0.233× F3 + 0.124× F4 (1)

5.3 Grey Relational Analysis of Dynamic Metrics

Dynamic metrics (see those metrics in Appendices, Figure 19) exhibit certain correlations; thus,
through grey relational analysis, the degree of association and weights are determined, further eval-
uating and elucidating the interactions between metrics over time.

Step 1: Data preprocessing.

The process involves normalizing metrics to ensure a positive orientation and incorporating the
optimal reference sequence (X0), resulting in the decision matrix XDM as follows:

(X0, X1, . . . , X6) =


x0(1) x1(1) · · · x6(1)
x0(2) x1(2) · · · x6(2)
...

... . . . ...
x0(n) x1(n) · · · x6(n)

 (2)

Step 2: Calculate correlation coefficient.

The correlation coefficient between each comparison sequence (X1, . . . , X6) and the optimal
reference sequence (X0) are calculated. A higher value of ξi(k) indicates a stronger correlation:

ξi(k) =
min
i
min
k
|x0(k)− xi(k)|+ ρ ·max

i
max

k
|x0(k)− xi(k)|

|x0(k)− xi(k)|+ ρ ·max
i

max
k
|x0(k)− xi(k)|

(3)

Step 3: Calculate correlation.
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The correlation, which represents the weight of each metric, is calculated as follows.

r0i =
1

n

n∑
k=1

ξi(k) (4)

Step 4: Dynamic metric evaluation.

Define Di,j as the state of the match for the j-th player at the i-th point:

Di,j = 0.211×ssi,j−0.225×slsi,j−0.121×eei,j+0.142×si,j+0.103×bsi,j−0.184×fai,j (5)

5.4 Adaptive Multifaceted Integration Model
5.4.1 Player’s Performance Evaluation

Inspired by the Exponential Moving Average (EMA) [1], we developed the Adaptive Multi-
faceted Integration Model (AMIM). Rather than simply weighting the results of static metric eval-
uations (individual level) and dynamic metric evaluations (match state) simultaneously, we believe
that in a match, the state of the game does not directly decide the outcome. Instead, it acts upon
the individual level, thereby influencing the result. Consequently, we define the performance of the
j-th player at the i-th point as Bi,j .

Bi,j =
Di,j + (1− α)Di−1,j + (1− α)2Di−2,j + ...+ (1− α)i−1D1,j

1 + (1− α) + (1− α)2 + ...+ (1− α)i−1
· Sj =

i∑
t=1

(1− α)i−tDt,j

i∑
t=1

(1− α)i−t

Sj

(6)

Here, α represents the smoothing coefficient, which controls the extent to which a series of
previous match states affects the player’s base level. We set α to 1

3
.

In Equation 6, applying EMA to Di,j implies that the match states closer to the i-th point have
a greater influence on the current state of the match. Moreover, over a short period, there will not
be significant changes in Sj . This multiplication can be considered as the current performance of
the j-th player.

5.4.2 Player’s Performance Swings in Response to Pointing Events

Following the application of AMIM to 31 matches, match situations can be categorized into
four distinct types: Dominating Set, Comeback Set, Rally Set, and Tight Set. Subsequently, we
select the most representative match for each of these situations (see Figure 3) to analyze player
performance throughout the pointing process within the entire match flow.

For example, the dominating set, as illustrated in Figure 18a (match_id: 2023-wimbledon-
1302), involved three sets. Player 2 achieved a dominating victory in each set, largely due to con-
sistently outperforming Player 1 on the majority of points.(The rest two set situations, comeback
set and rally set. These figure in Appendices, Figure 18)
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(a) Dominating Set (b) Tight Set

Figure 3: Flow of two match situations

5.4.3 Validation of Performance Evaluation

To validate the effectiveness of our model in evaluating player performance, we calculate the
difference in performance values between players for each match (Bplayer1 − Bplayer2), using the
resulting difference to predict the outcome of each scoring point and comparing it with the actual
outcomes. The prediction accuracy for scoring points across all 31 matches was then statistically
analyzed (Figure 4). It was observed that our model achieved an average accuracy of 76.5% across
all matches, with the highest accuracy reaching 87%.

Figure 4: Prediction accuracy for 31 matches

For instance, focusing on predictions with the highest precision, the magnified view reveals that
the performance differences under most points are consistent with whether a score is made or not.
The discrepancies in certain predictions from actual outcomes may be attributed to the influence of
momentum.

Finally, we provide a visual description of the match flow in Figure 5.

6 Task 2: Causality and Correlation Analysis of Momentum

6.1 Basic Definitions

In sports events, momentum is an important yet elusive metric. In the Literature Review section,
we have already considered the definition of momentum from two perspectives (PM and BM).
Before defining momentum, we first selected relevant metrics from these two dimensions (Table 4).
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Figure 5: Description of the match flow

Table 4: Psychological metrics and behavioral metrics

Perspective Metrics Type Domain Explanation

PM

SP discrete -1, 1 serving possession
SS discrete 0, 2, 3, 4 consecutive scoring
SL discrete 0, 2, 3, 4 consecutive losing scores
FA discrete 0(F), 1(T) fault
FUA discrete 0(F), 1(T) unforced fault

BM Ep continuous [-1, 1] energy expenditure ratio

Here, Ep defines:

Ep =

N∑
i=1

runi

M∑
i=1

runi

(7)

Where
N∑
i=1

runi represents the cumulative distance covered by a player up to the Nth point, and

M denotes the total number of movements made by the player within the game.

6.1.1 Leverage

Leverage, a measure of how the probability of winning changes with scoring or conceding
points, holds significant referential value for the analysis of sports events [2]. To better integrate
PM and BM, we define leverage Li as follows:

Li = w1 · SSi + w2 · SLi + w3 · FAi + w4 · FUAi + w5 · SSi + w6 · Epi (8)
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6.1.2 Momentum Value

Practical considerations indicate that, regardless of the analytical perspective or measurement
method employed, there are limitations. Inspired by Briki, Walid, et al. [3], we will measure mo-
mentum from an integrative perspective. A detailed momentum framework is shown as Figure 6.

Figure 6: A Comprehensive Momentum Framwork

We define the momentum valuemi:

mi =
Li + (1− β)Li−1 + (1− β)2Li−2 + ...+ (1− β)i−1L1

1 + (1− β) + (1− β)2 + ...+ (1− β)i−1
=

i∑
t=1

(1− β)i−tLt

i∑
t=1

(1− β)i−t

(9)

Where β represents the dynamic factor, which we set to β = 1
3
.

6.1.3 Clutch

The concept of a clutch, as identified by [2], refers to a point that significantly influences the
probability of winning the current match. We consider a point to be a clutch when its leverage rate
exceeds a predefined threshold.

Taking the dominating set from Task One as an example(Figure 7), we further analyze their
momentum values.

It can be observed that momentum value effectively explains the occurrence of a dominating
set:

• The momentum value of player2 is greater than that of player1.
• The duration of player2’s momentum advantage significantly exceeds that of player1.
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(a) Momentum value of dominating set (b) Performance of dominating set

Figure 7: Analysis of 2023-wimbledon-1302’s momentum

6.2 Causality Analysis Between Momentum and Performance
6.2.1 Construct Time Series

To analyze the correlation between the fluctuating values of momentum and the performance
differential between two players within the samematch, we first serialize and standardize the data to
construct time series. After processing, we obtain time series where y can representm (momentum)
or Bplayer1 − Bplayer2.

Yt = {yt1, . . . , ytM} (10)

6.2.2 The Granger Causality Test

Firstly, the Augmented Dickey-Fuller (ADF) test method is employed to check the stationarity
of each time series, thus avoiding the phenomenon of ”spurious regression”. For non-stationary
time series, differencing is performed until stationarity is achieved. Upon obtaining stationary time
series, the Granger causality test model [4] is utilized to examine the causal relationship between
the value of momentum and the performance margin across 31 matches. The optimal lag order is
determined based on the Akaike Information Criterion (AIC), and the combinations with significant
causal relationships are identified as shown in Table 5.

Table 5: Causality of momentum value and performance margin in 31 matches

Match M-1301 M-1302 M-1303 M-1304 M-1305 M-1306 M-1307 M-1308
Causality ⇐⇒ ⇐⇒ ⇐ ⇐⇒ ⇐⇒ ⇐⇒ ⇐ ⇐⇒

Match M-1309 M-1310 M-1311 M-1312 M-1313 M-1314 M-1315 M-1316
Causality ⇒ ⇐⇒ ⇐⇒ ⇐⇒ ⇐⇒ ⇐⇒ ⇐⇒ ⇐⇒

Match M-1401 M-1402 M-1403 M-1404 M-1405 M-1406 M-1407 M-1408
Causality ⇐ ⇐⇒ ⇐ ⇒ ⇐⇒ ⇐⇒ ⇐ ⇐⇒

Match M-1501 M-1502 M-1503 M-1504 M-1601 M-1602 M-1701
Causality ⇒ ⇐⇒ ⇐⇒ ⇐ ⇐⇒ ⇐⇒ ⇐⇒

Where, ⇐⇒ denotes that in this match, the value of momentum and the performance margin
cause changes in each other,⇒ indicates that the value of momentum leads to changes in the per-
formance margin, and⇐ signifies that the performance margin influences the value of momentum.
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It was observed that in 22 matches, changes in momentum and performance differences caused
changes in each other. In 3 matches, momentum influenced performance differences, while in 6
matches, performance differences affected momentum. This preliminarily indicates a causal rela-
tionship between momentum and performance differences, suggesting that they mutually influence
each other in most cases.

6.3 Correlation Analysis Between Momentum and Performance
6.3.1 Feature Magnification

Define function fα,β(x):

fα,β(x) =

{
eαmin(x,β) if x ≥ 0

−eαmin(|x|,β) if x < 0
(11)

6.3.2 Correlation Analysis

Applying the function f(·) to Yt, we obtain Ŷt = {f(yt1), . . . , f(ytM)}. For ease of analysis,
we define K = {k1, . . . , kM} (for y = m), and G = {g1, . . . , gM} (for y = Bplayer1 − Bplayer2).
ConstructKs as follows:

Ks =

{
{0, . . . , 0, k1, . . . , kn−s} if s ≥ 0

{kn−s, . . . , k1, 0, . . . , 0, } if s < 0
(12)

where |s| represents the number of zeros, and −M < s < M .

We define the inner product of Ks and G as R(Ks, G) = Ks · G, and the specific calculation
for correlation is as follows:

CC(Ks, G) =
R(Ks, G)√

R(Ks, G), R(G,G)
(13)

Given that the direction of swings between the two time series curves might be consistent or
opposite, it is necessary to consider cases where the correlation is greater than zero and less than
zero, respectively.

CCmin = min
−M<s<M

(Ks, G)

CCmax = max
−M<s<M

(Ks, G) (14)

The indices of the maximum and minimum values are determined by:

s1 = arg min
−M<s<M

(Ks, G)

s2 = arg max
−M<s<M

(Ks, G) (15)
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The tuple FCC(K,G) is defined as:

FCC(K,G) =

{
(CCmin, s1) if |CCmax| < |CCmin|
(CCmax, s2) if |CCmax| ≥ |CCmin|

(16)

This tuple represents three pieces of information: the significant correlation between the two
time series, the sequence of swing occurrence, and the direction of swing.

• FCC(K,G) is confined within the range [−1, 1]. Values closer to 1 or -1 indicate a stronger
correlation betweenK and G.

• For determining the sequence of swing occurrence, s > 0 implies thatG fluctuates beforeK,
and vice versa.

• Regarding the direction of swing, if FCC(K,G) > 0, it indicates that the swings are in the
same direction, i.e., positively correlated; otherwise, they are negatively correlated.

6.4 From Macro to Micro: A Layered Analysis of Momentum
6.4.1 Macro Analysis of FCC

In the analysis of 31 matches, the FCC (swing Characteristic Coefficient) between the momen-
tum of each match and the performance margin, as listed in Table 6, is consistently above 0.76,
indicating a strong positive correlation. Moreover, a noticeable pattern is that swings in momentum
precede those in performance margin.

Table 6: FCC of momentum and performance margin in 31 matches

Match M-1301 M-1302 M-1303 M-1304 M-1305 M-1306 M-1307 M-1308
FCC 0.93 0.905 0.901 0.773 0.915 0.935 0.766 0.791

Match M-1309 M-1310 M-1311 M-1312 M-1313 M-1314 M-1315 M-1316
FCC 0.891 0.87 0.948 0.797 0.825 0.811 0.804 0.794

Match M-1401 M-1402 M-1403 M-1404 M-1405 M-1406 M-1407 M-1408
FCC 0.882 0.891 0.81 0.84 0.892 0.826 0.849 0.911

Match M-1501 M-1502 M-1503 M-1504 M-1601 M-1602 M-1701
FCC 0.779 0.815 0.857 0.877 0.825 0.832 0.902

6.4.2 Micro Analysis of Momentum

Before capturing momentum, it is necessary to identify all clutch moments within each match.
By observing the performance following clutch moments, we assess the effect of momentum.

Here, taking two match situations from Task One as examples, we elaborate further.

In Figure 8, we observe: when the clutch moment is at an Advantage, under the influence of
momentum, the player performs well. Conversely, when the clutch moment is at a Disadvantage,
the influence of momentum results in poor performance.
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(a) Momentum of dominating set (b) performance of tight set

Figure 8: Capture momentum with clutches

Figure 9: Workflow of Task 3

7 Task 3: Flow of Play with Probability Prediction
In sports events, swings in the match are often time-related. Such phenomenon is considered to

be congruent with theMarkov chain. However, this approach has a critical limitation: it necessitates
the assumption that each set within a match is independent of others, an assumption dictated by the
unique scoring rules of tennis competitions.

Starting from this premise, we propose the incorporation of Support Vector Machines (SVM)
to refine the Markov chain, thereby facilitating a more accurate analysis of tennis matches.

7.1 Basic Markov Chain Model to Tennis
7.1.1 Game Perspective

Before the analysis, we first define the relevant variables:

• P (a, b): The probability that player1 wins a game when the point is (a, b).
• pi: The scoring rate of player1 when serving at the i-th point.
• qi: The scoring rate of player2 when serving at the i-th point.
For a game, there are two situations: regular game and tie-breaker.

Case 1: Regular game: Here we assume this game is player1’s serve.

• Probability transition equation:

P (a, b) = pi · P (a+ 1, b) + (1− pi) · P (a, b+ 1) (17)
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• Boundary conditions: {
P (4, b) = 1 if b ≤ 2

P (a, 4) = 0 if a ≤ 2
(18)

• 30 all:

P (3, 3) = p2iP (5, 3) + 2pi(1− pi)P (4, 4) + (1− pi)
2P (3, 5) =

p2i
p2i + (1− pi)2

(19)

Case 2: Tie-breaker: Here we assume player1 serves first in this game.

• Probability transition equation:{
P ∗(a, b) = pi · P ∗(a+ 1, b) + (1− pi) · P ∗(a, b+ 1) if (a+ b)mod2 = 0

P ∗(a, b) = qi · P ∗(a, b+ 1) + (1− qi) · P ∗(a+ 1, b) if (a+ b)mod2 = 1
(20)

• Boundary conditions: {
P ∗(7, b) = 1 if b ≤ 5

P ∗(a, 7) = 0 if a ≤ 5
(21)

• 60 all:

P ∗(6, 6) =
pi(1− qi)

pi(1− qi) + qi(1− pi)
(22)

7.1.2 Set Perspective

By treating a game as a point, we can naturally extend the formulas used within a game to a set.
Once the pointing rate for each point within a game is determined, the corresponding probability of
winning the game is also defined. Here is the definition the relevant variables.

• PS(c, d): The probability of player1 winning a set when the game is (c, d).
• P : The probability of player1 winning a game in player1’s serve.
• Q: The probability of player1 winning a game in player2’s serve.
• Probability transition equation:{

PS(c, d) = P · PS(c+ 1, d) + (1− P ) · PS(c, d+ 1) if (c+ d)mod2 = 0

PS(c, d) = Q · PS(c, d+ 1) + (1−Q) · PS(c+ 1, d) if (c+ d)mod2 = 1
(23)

• Boundary conditions: {
PS(6, d) = 1 if d ≤ 4

PS(c, 6) = 0 if c ≤ 4
(24)

• At 5-5, the equation becomes:

PS(5, 5) = P ·Q+
(
P ·Q+ (1− P )(1−Q)

)
P ∗ (25)
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7.1.3 Match Perspective

By considering a set as a point, we can naturally extend the formulas used in games to matches.
Once the probability of winning each game within a set is established, the corresponding probability
of winning the set is also determined. Here is the definition the relevant variables.

• PM(e, f): The probability of player1 winning the match when the score is (e, f ).
• PS: The probability of player1 winning a set.
• Probability transition equation:

PM(e, f) = PS · PM(e+ 1, f) + (1− PS) · PM(e, f + 1) (26)
• Boundary conditions: {

PM(3, f) = 1 if f ≤ 2

PM(e, 3) = 0 if e ≤ 2
(27)

7.2 Probability Updatable Markov Chain (PUMC) Based On SVM
7.2.1 Theoretical Formula

In Task Two, we have demonstrated the effectiveness of momentum and its interaction with
performance difference. Drawing from the definition of momentum value, we further transform
static metrics: the application of momentum value on static metrics introduces variability, which
we refer to as the swing Factor (SF ).

SFs =
Li + (1− β)Li−1 + (1− β)2Li−2 + ...+ (1− β)i−1L1

1 + (1− β) + (1− β)2 + ...+ (1− β)i−1
·Xs =

i∑
t=1

(1− β)i−tLt

i∑
t=1

(1− β)i−t

·Xs (28)

where s = 1, 2, . . . , 15. Xs represents a static metric (for example, ar (ace rate), scr (score
rate)).

Adaptability Explanation: First, we defined a dynamic factor set, representing the cumulative
impact of past matches that have occurred:

SFset = {SF1, SF2, . . . , SF15}

To determine the current round’s probability of winning, we need to calculate the probability
of winning in the current round given the dynamic factors. This integrates the influence of previ-
ous match outcomes, ensuring that the winning probability for each round depends on the overall
competition situation:

Define SFsubset = {x|x ⊂ SFset

∩
x ̸= ∅}, then

P (correcti|SFsubseti−1
, . . . , SFsubset1) (29)

where correcti denotes a successful prediction for the i-th point
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7.2.2 PUMC Solving Algorithm

Based on the above basic data and models, the process of obtaining the probability strategy is
as follows:

Algorithm 1: PUMC Solving Algorithm
Initialization: DMetrics = Ci··· ,s, Point Number: Pnum = 0,

FinalState = {’4-0’: 1,...,’4-2’:1,’0-4’:0,...,’2-4’:0}
Step 1: Determine the adaptive winning probability in a point
while No Point Winner do

for t← 1 to Pnum do
Calculate the momentum and performance: SFi;
Transform(DMetrics);
Probt = SVM(DMetrics);
State transition: P (a+ 1, b)← P (a, b) or P (a, b+ 1)← P (a, b);
Update DMetrics Ci;

Step 2: Predict the winning probability of the match at each point
for game in a set do

while No Game Winner do
for t← 1 to Pnum do

if (a, b) not in FinalState then
P (a, b) = Probt · P (a+ 1, b) + (1− Probt) · P (a, b+ 1);

else
P (a, b) = FinalState(a, b);
break;

7.3 Result Analysis
7.3.1 Prediction of Winning Probability

After adjustments through SVM, our model achieved a final accuracy rate of 77.3%. To further
observe when the flow of play is about to change from favoring one player to the other, we consider
0.5 as a pivotal point. A transition is identified when the probability of winning a game shifts from
above 0.5 to below 0.5 or vice versa. Here, we take the dominating set as an example (match_id:
2023-wimbledon-1302), with the prediction results shown in Figure 10.

(a) Point level (b) Match level

Figure 10: Prediction of winning probability
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• From point level. Considering the winning probability from a point perspective, Player
2’s probability is mostly above 0.5, indicating a predominant chance of victory across most
points. Additionally, there are instances where Player 1 holds the advantage, but Player 2
quickly regains the upper hand in the following point, further elucidating the characteristics
of a dominating set.

• From match level. Observing the winning probability of the last two points, it becomes
evident that Player 1 is almost certain to win the match. For other points, Player 2’s winning
probability is generally above 0.6, and in some cases, even as high as 0.8, illustrating a good
grasp of the dominating set’s nature from the match level.

7.3.2 Validation of SVM Effectiveness

Figure 11: T-SNE visualization of the dataset

Finally, we perform T-SNE dimensionality reduction on the real dataset (left image) versus the
results after SVM training (right image) as shown in Figure 11. When reduced to two dimensions,
using a vertical line as the divider, we can distinguish two states. It is observed that SVM effectively
captures this state. The points where colors are mixed on both sides of the state reflect the swing of
the state, and SVM has also captured this volatility to a certain extent.

Explanation for the differences in volatility: Since the data is sourced from the Wimbledon
Gentlemen’s final, we believe that the levels of the players are closely matched, and it is the state
of the match that leads to increased volatility in the outcomes.

7.3.3 Capturing the Dominant swing Factors

In the previous section, we updated the serving score using SVM. Besides considering the ac-
curacy of SVM, we also need to interpret SVM’s prediction results with other methods to further
determine the dominant swing factors of the flow of play.

Here, we employ SHapley Additive exPlanations (SHAP) [5], a method based on the concept
of Shapley values from cooperative game theory, to explain the predictions of machine learning
models.

• Feature values. Features with larger Shapley absolute values are considered important. Here,
we measure SHAP feature importance by the average Shapley absolute value. It is found that
the most important swing factors are SSER, SBR, FSR, SSCR, while DFR and SSSR have
almost no effect on the prediction outcome.

• SHAP values. The summary plot combines feature importance and the impact of features.
Each point on the summary plot represents the SHAP value for a feature and a specific data
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(a) Feature values (b) SHAP values

Figure 12: Capture the dominant factors from 15 swing factors

point. Further analysis reveals that SSER (second serve success rate), SBR (break point
save rate), FSR (first serve success rate), SSCR (serving scoring rate) predominantly play a
facilitative role in the outcome.

In conclusion, we identify the dominant swing factors influencing the flow of play as: SSER,
SBR, FSR, SSCR.

7.3.4 Practical Suggestions for a New Match

Based on our previous research, we found that momentum changes during a match can influence
the outcomes of individual games. Through feature selection and model validation, we identified
that these momentum factors are primarily affected by first-serve success rate, second-serve suc-
cess rate, saved break points success rate, and service game winning rate. Therefore, for a player
participating in a new match, we offer the following suggestions:

Self-Adjustment: Given the strong correlation betweenmomentum and performance in amatch,
we observe that momentum often determines a player’s specific performance in the current game. It
is advisable for the player to forget about negative outcomes from past matches, adjust their mental
state, and fully unleash their capabilities on the court.

Emphasize Service Games: We found that the service game winning rate has a significant
impact on match outcomes. In one’s own service games, it is recommended to maximize the first-
serve success rate, contributing to a quicker victory over the opponent.

Effort in Saving Break Points: Results indicate that a higher success rate in saving break
points further increases the likelihood of winning the match. In situations where the player is at a
disadvantage, it is crucial to stabilize break point defenses, as this represents an opportunity for a
player to turn the tide.
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8 Task 4: Evaluate Model Performance and Eneralizability

8.1 Predictive Capability

To further demonstrate the model’s performance, we analyzed 31 matches using two metrics
(accuracy and recall). The results are shown in Figure 13.

(a) Accuracy of model prediction (b) Recall of model prediction

Figure 13: Evaluation of model prediction

• Accuracy: Observing Figure 13a, it is noted that the highest accuracy was achieved in
the match M-1503 (match_id: 2023-wimbledon-1503) at 92.1%. The lowest accuracy still
reached 72.6%, indicating that the model is highly accurate in making judgments about
swings.

• Recall: Observing Figure 13b, it is found that the highest recall was achieved in the matchM-
1408 (match_id: 2023-wimbledon-1408) at 95.4%. The lowest recall also reached 75.0%,
showcasing the model’s ability to identify as many instances of swings as possible.

8.1.1 Generalization Performance in Women’s Tennis Competitions

To further demonstrate the model’s generalization capability, we selected data related to the
Federation Cup, also known as the Fed Cup [6].

Comparing different rules, we adjusted the model, ultimately obtaining the model’s prediction
results on this dataset (Figure 14).

Figure 14: A match level prediction for Wickmayer, Yanina (BEL)

Here, we predict the probability of victory for a player at the match level. The yellow line
represents the winning outcome for this player (2-1). Referencing the yellow line, we can analyze
each of the three sets individually.

1. First set: Initially, the probability of winning was low (0.2), but from the second game on-
wards, the probability of winning increased, yet fluctuated around 0.5.
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2. Second set: The early part largely continued the trend of the first set, with a wider swing in
the probability of winning in the latter half.

3. Third set: Although the final judgment on the outcome was correct, there was the significant
swing in the probability of winning throughout the set, especially towards the end of the
match.

In summary, analyzing from a match-level perspective reveals that, although our model’s final
judgment on the match outcome was correct, the prediction process was unstable. We believe the
instability can be attributed to the following reasons:

1. Insufficient dataset size
2. Lack of further data cleaning
3. Changes in certain conditions (player gender, court type, etc.)

8.2 Model Improvements
8.2.1 Consideration of Other Factors

• Intrinsic differences between serving and receiving.
This discrepancy arises because players have a greater advantage while serving. Therefore, we

introduce a variable to adjust for the intrinsic difference between serving and receiving: e.{
p
′
= p+ e

q
′
= q + e

(30)

• The Impact of Court Surface.
The type of court surface (hard, grass, clay, and carpet) can significantly influence the character-

istics of a tennis match. The primary difference between these surface types is their hardness, which
affects the power and intensity of serves. The faster the court surfaces, the higher the probability of
a player winning a point on their serve.

Therefore, an adjustment to the probability is made: p′ = p+ pα

8.2.2 Universality

1. Difference: Tennis competitions include singles, doubles, and team events. Doubles and
team events require a comprehensive consideration of players’ performance and momentum,
as well as the physical differences between men and women in mixed doubles.

2. Specificity: The Wimbledon Championships is the only Grand Slam event played on grass
courts among the four major tournaments. Different court types can influence the probability
p through pα, thereby adjusting the probability of a player winning a game.

9 Sensitivity and Robustness Analysis

In this section, we analyze the sensitivity of the prediction accuracy for each game with respect
to the smoothing coefficient and the robustness concerning the dynamic factor.
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9.1 Sensitivity Analysis

We choose different smoothing coefficients α as influencing indicators, with the number of
matches as the horizontal axis and the accuracy of match predictions as the vertical axis. This
allows us to observe the benefits of the model under different smoothing coefficients are shown in
Figure 15.

Figure 15: The accuracy of the model under different smoothing coefficients

From the figure, it can be observed that under the influence of different smoothing coefficients,
the prediction accuracy for each match exhibits slight swings. Moreover, with a larger smoothing
coefficient, the relative prediction accuracy tends to be higher. This is primarily because a larger
smoothing coefficient considers a more extensive history of match results, resulting in predictions
that better align with actual outcomes. Therefore, it can be inferred that the model demonstrates a
higher level of sensitivity.

9.2 Robustness Analysis

We choose different dynamic factors β as influencing indicators, with the percentage swing in
prediction accuracy as the horizontal axis and different numbers of match occurrences as the vertical
axis. This allows us to observe the benefits of the model under different dynamic factors are shown
in Figure 16.

Figure 16: The percentage swing in prediction accuracy of the model under different dynamic factors

From the figure, it can be observed that under the influence of different dynamic factors, the
percentage swing in prediction accuracy for each match remains within the range of−10% to 10%.
The average swing is centered around 0. Therefore, it can be concluded that the model exhibits
excellent stability regarding the fluctuating factors in actual matches. This validates the robustness
of the proposed model.
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10 Strengths and Weaknesses

10.1 Strengths

1. Integration of Dynamic and Static Metrics: By categorizing metrics and applying a mov-
ing average weighted dynamic metric to static metrics, the overall evaluation of a player’s
performance is more accurate.

2. Analysis of theCorrelationBetweenMomentum swings andPerformance swings: Through
the extraction and amplification of swing characteristics, the correlation strength and se-
quence of swings between momentum and performance are precisely captured.

3. Mechanistic Analysis of Match Probabilities: From a statistical perspective, using the
Markov model to suggest state transition matrices for match states allows for mechanistic
analysis of the match process, yielding more rational and accurate results.

4. Real-timeUpdate ofWinning Probabilities Influenced byMomentum: Through the swing
factor metric, SVM outputs are updated in real time to predict the winning probability of the
next point. Considering the impact of momentum makes the model more reasonable and
complete.

5. Universality: After adjustments and improvements, the model can be applied to any tennis
match or other ball sports, with high accuracy.

10.2 Weaknesses and Improvement
10.2.1 Weaknesses

1. Numerous Factors Influencing Player Performance and Swings: Such as the number of
matches a player has participated in under similar conditions (e.g. weather), the number of
matches played by the player in the days leading up to the match, and the importance of the
match, which are not considered in the model.

10.2.2 Improvement

1. Adjustment Factors: Incorporating factors such as the importance of the match and the
frequency of the player’s participation in matches into the model, adding adjustment factors
to reflect real situations better, can increase the accuracy of the results.

2. Hyperparameter Selection: Machine learning models typically require hyperparameters,
and the process of obtaining optimal hyperparameters is often empirical. Choosing better
hyperparameters can improve the precision of prediction algorithms.
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11 Memorandum

To: The Trader
From: Team# 2423183
Date: February 6th, 2024
Subject: Momentum analysis – a integrated and holistic approach

Dear Sir or Madam,

Based on recent research on momentum, to analyze the effect of momentum, we quantified
momentum from two perspectives: psychological momentum and behavioral momentum, and con-
ducted a detailed analysis of momentum at three levels: point, game, and set.

First, it is essential to note the causal relationship between momentum and player performance.
To uncover this relationship, we selected 21 metrics from both dynamic and static perspectives to
evaluate player performance and determined through time series correlation analysis that the swing
between the two are positively correlated. In the figure below, after the green key points, momentum
increases; after the red key points, momentum decreases. Hence, momentum plays a key role in the
swings of the match, and players should seize momentum at critical scoring points to enhance their
performance.

Secondly, we developed a probability updatable markov chain (PUMC) based on SVM to pre-
dict swing during the match, ultimately achieving a predictive accuracy of 76.5% (with the highest
accuracy reaching 92.1%). Through interpretability analysis, we successfully identified four domi-
nant fluctuation factors: the success rate of the second serve, break point save rate, the success rate
of the first serve, and the scoring rate on serve.

Lastly, based on the above analysis, we present the following constructive advice:

Tip 1: Self-Adjustment. Given the momentum often determines a player’s specific performance
in the current game. Players are advised to forget negative outcomes from past matches,
adjust their mental state, and fully unleash their capabilities on the court.

Tip 2: Focus on Service Games. We observed that the win rate of service games significantly
impacts the match outcome. In one’s service games, it is recommended to try to increase the
first serve success rate, which helps to defeat the opponent more quickly.

Tip 3: Strive to Save Break Points. Results show that improving the success rate of saving break
points further increases the likelihood of winning matches. In disadvantageous situations,
stabilizing break point defense is crucial, as it represents an opportunity for players to turn
the situation around.
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Appendices

(a) Comeback Set (b) Rally Set

Figure 18: Flow of rest two match situations

Figure 19: Explanation of static metrics And dynamic metrics


	1 Introduction
	1.1 Problem Background
	1.2 Restatement of the Problem
	1.3 Overview of Our Work

	2 Assumptions and Justifications
	3 Notations
	4 Model Preparation
	5 Task 1: Flow of Matches With Performance Evaluation
	5.1 Metrics Reconstruction
	5.2 Factor Analysis of Static Metrics
	5.3 Grey Relational Analysis of Dynamic Metrics
	5.4 Adaptive Multifaceted Integration Model

	6 Task 2: Causality and Correlation Analysis of Momentum
	6.1 Basic Definitions
	6.2 Causality Analysis Between Momentum and Performance
	6.3 Correlation Analysis Between Momentum and Performance
	6.4 From Macro to Micro: A Layered Analysis of Momentum

	7 Task 3: Flow of Play with Probability Prediction
	7.1 Basic Markov Chain Model to Tennis
	7.2 Probability Updatable Markov Chain (PUMC) Based On SVM
	7.3 Result Analysis

	8 Task 4: Evaluate Model Performance and Eneralizability
	8.1 Predictive Capability
	8.2 Model Improvements

	9 Sensitivity and Robustness Analysis
	9.1 Sensitivity Analysis
	9.2 Robustness Analysis

	10 Strengths and Weaknesses
	10.1 Strengths
	10.2 Weaknesses and Improvement

	11 Memorandum
	References
	Appendices

