2D Virtual Try-on Based on Deep Learning

2D Virtual Try-on Based on Deep Learning

项目介绍

本项目主要面向第 $14$ 届全国服务外包创新创业比赛 $A16$ 赛道虚拟试衣赛题,采用 $2D$ 虚拟试衣技术依托于 $VITON$ 开源数据集训练 $DNN$ 网络并着重进行工程化落地应用;项目选用了前沿顶刊论文的 $PFAFN$ 模型,在此基础上对模型进行优化改进,实现了模型压缩和推理加速并使用 $OpenVINO$ 框架进行部署应用,出色地完成了赛题的要求。

项目示例

项目开发环境

开发平台 版本 开发工具 版本
Pycharm 2022.3.2 Visual Studio Code 1.80.1
Visual Studio 17.5.5
开发环境 版本 开发环境 版本
neural-compressor 2.2.1 nncf 2.5.0
numpy 1.23.4 onnx 1.14.0
opencv-python 4.7.0.72 onnxruntime 1.15.1
openvino 2022.3.0 pandas 1.3.5
pytorch-fid 0.3.0 rembg 2.0.50
pytorch 2.0.0 torch-pruning 1.1.9
intel-openmp 2021.4.0

模型结构介绍

本项目基于 $PFAFN$ 模型重新设计各个网络模块,具体结构如下图所示:

DNN网络结构

项目工程化落地

为了满足赛题方的要求,本项目开展了工程化落地部分,主要分为两个部分,模型训练和模型剪枝量化。项目工程化部署总图如下所示:
项目工程化部署总图

项目详细技术文档

实验结果:通道剪枝

  • Clothe Warp Module
Metrics GFLOPs Para(M) SIZE(MB) Total SIZE(MB) Compresion Ratio FID FID Loss
Original Module 6.63 9.37 35.8 112.0 100.00% 8.906 0.00%
Ratio=0.2 with FineTuning 5.23 7.28 27.6 88.69 79.19% 9.013 1.20%
Ratio=0.3 with FineTuning 4.40 6.48 24.8 65.73 58.69% 9.113 2.32%
Ratio=0.4 with FineTuning 3.79 5.61 20.4 40.97 36.58% 9.304 4.47%
Ratio=0.5 with FineTuning 3.42 4.55 16.8 35.47 31.67% 9.977 12.03%
  • Image Generation Module
Metrics GFLOPs Para(M) SIZE(MB) Total SIZE(MB) Compresion Ratio FID FID Loss
Original Module 21.93 43.90 167 167 100.00% 8.906 0.00%
Ratio=0.2 with FineTuning 16.54 35.02 112.3 112.3 67.25% 9.212 3.44%
Ratio=0.25 with FineTuning 15.45 31.93 94.39 94.39 56.52% 9.405 5.60%
Ratio=0.3 with FineTuning 13.90 29.89 80.25 80.25 48.05% 9.679 8.68%
Ratio=0.35 with FineTuning 12.78 27.31 73.49 73.49 44.01% 9.835 10.43%
Ratio=0.4 with FineTuning 11.20 26.12 68.52 68.52 41.03% 10.527 18.20%
  • 最优剪枝方案
Model Original Model Sparsity Pruned Model FID FPS
CWM 112MB 40% 40.97MB 9.504 2.92
IGM 167MB 25% 94.39MB 9.504 2.92

实验结果:量化感知训练

Optimization CPU-FID GPU-FID Original Model Quantized Model
Unquantized 9.504 9.483 135.36MB 135.36MB
Quantize CWM 9.783 9.701 40.97MB 10.85MB
Quantize IGM 10.382 10.249 94.39MB 24.10MB
Quantize CWM & IGM 11.503 11.379 135.36MB 34.95MB

实验结果:img2col 优化加速

Runtimes CorrTorch(s) Img2Col(s) FPS Acceleration Rate
n=1000 147.8491 94.7902 10.81 1.5598
n=10000 1489.1325 927.4293 10.77 1.6057
Average Time 0.1488 0.029 10.79 1.6017

参考文献

  • Y. Ge, Y. Song, R. Zhang, C. Ge, W. Liu, and P. Luo, “Parser-Free Virtual Try-on via Distilling Appearance Flows,” arXiv preprint arXiv:2103.04559, 2021.
  • Y. Cheng, D. Wang, P. Zhou and T. Zhang, “Model Compression and Acceleration for Deep
    Neural Networks: The Principles, Progress, and Challenges,” in IEEE Signal Processing Magazine,
    vol. 35, no. 1, pp. 126-136, Jan. 2018, doi: 10.1109/MSP.2017.2765695.
  • PyTorch Quantization Aware Training

2D Virtual Try-on Based on Deep Learning

https://lzhms.github.io/projects/VirtualTryon/

Author

Zhihao Li

Posted on

2023-10-05

Updated on

2024-12-24

Licensed under


Comments